Bandgap Engineering in InAs/GaSb II Superlattices: Modulation and Vacancy Defects Analysis

网站编辑备注:前沿论文模块推文格式尚未完全统一风格,这篇推文仅作为参考,目前推文仍处于早期阶段,正在修改调整中。

Article information

Type: research article

Photonics 202512(3), 249; https://doi.org/10.3390/photonics12030249

Abstract

The computational analysis of InAs/GaSb type-II superlattices utilizing density functional theory (DFT) with pseudopotentials has been performed. The PBE+U method was employed to correct for the strong correlation effects of the P orbitals of In, As, Ga, and Sb, thereby improving the accuracy of the bandgap calculations. The study investigated the impact of the number of layers in the InAs and GaSb bulk materials on the superlattice bandgap. The results revealed that as the number of InAs layers increased while keeping the number of GaSb layers constant, the bandgap decreased. Conversely, when the number of GaSb layers increased with a constant number of InAs layers, the bandgap increased. In conjunction with the interface issues and vacancy defects frequently encountered in InAs/GaSb type-II superlattices, electronic structure analyses indicate that InAs, as the primary electron aggregator, significantly influences the modulation of the superlattice bandgap.

Keywords: first principles; InAs/GaSb type-II superlattices; PBE+U; vacancy defects

研究对象

Object of Study

InAs/GaSb Ⅱ类超晶格(T2SL)是第三代红外探测器和低功耗光电子器件的核心材料之一,其带隙可覆盖中-远红外波段。然而,晶格失配和界面缺陷导致带隙难以精确调控。本研究利用密度泛函理论(DFT)探索层厚与空位缺陷对带隙的定量影响,为后续实验提供理论依据。

计算方法

Computing Method

计算框架:基于DFT+U赝势方法,采用PWMAT软件包。

交换-关联:PBE 泛函+U 修正(In/As/Ga/Sb 的 p 轨道 U 值 3–4 eV),以矫正强关联效应

模型:构建 (InAs)_m/(GaSb)_n 超晶格,m、n 取 3–10 周期;对真空层、k 网格、能量截断进行充分收敛测试。

缺陷模拟:引入界面/体内四种本征空位(V_In、V_As、V_Ga、V_Sb),计算形成能与电荷跃迁能级。

主要结论

Main Conclusion

  1. 层厚调控规律
    • 固定 GaSb 层数 (n=7),随 InAs 层数 m 增加,带隙单调减小;
    • 固定 InAs 层数 (m=7),随 GaSb 层数 n 增加,带隙单调增大;
    • 两条带隙曲线在 m=n=7 处相交,显示出电子束缚能(InAs 主导)强于空穴束缚能(GaSb 主导)
      物理原因:电子波函数在 InAs 导带中量子限域更强,而空穴在 GaSb 价带中限域较弱,导致层厚变化对导带极小值(CBM)的调控灵敏度高于价带顶(VBM)。
  2. 空位缺陷行为
    • 形成能:V_Sb < V_Ga ≈ V_As < V_In;界面处空位形成能普遍低于体内,表明界面更易产生缺陷。
    • 电荷态:V_In、V_Ga 随费米能级升高趋向 q = –3,表现为施主,易诱导 n 型导电;V_As、V_Sb 在费米能级 >1 eV 时趋于稳定受主态,易导致 p 型导电。
    • 结论:界面质量对器件输运性质具有决定性作用,Sb 空位是最易形成的缺陷类型。

创新点与意义

Innovation Points and Significance

• 首次系统比较了 InAs 与 GaSb 层厚对 T2SL 带隙的“非对称”调控能力,为精准设计带隙提供定量依据。
• 将 DFT+U 方法应用于含 In/Ga 3d 电子体系,提高了带隙计算精度(与实验值误差 <5%)。
• 揭示了不同空位缺陷对导电类型的调控机理,为后续界面钝化或掺杂策略指明方向。

局限与展望

Limitations and Prospects

  1. 计算采用周期性边界条件,未考虑真实器件中的应变弛豫与非辐射复合中心;
  2. 缺少温度效应和载流子散射机制;
  3. 后续可结合 GW 近似或实验验证,进一步提高预测可靠性,并指导分子束外延(MBE)生长参数优化。

该文献通过高精度第一性原理计算,阐明了 InAs/GaSb II 类超晶格带隙随层厚的变化规律及空位缺陷的微观作用机制,为红外探测器用超晶格材料的带隙工程和界面优化提供了重要理论支撑。